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Mahalanobis Distance

Mahalanobis distance is the distance between a point and a distribution.
The distribution is represented by several sample points, which are stacked into a 
matrix.

mahalanobis_distance (point, matrix) = 
(point – mean(matrix)) * inv(cov(matrix)) * (point – mean(matrix))^T

‘point’ is an N-element vector.
‘matrix’ is an [M x N] matrix.

‘mean(x)’ returns the column-means of a matrix x.
‘inv(x)’ returns x’s inverse matrix.
‘cov(x)’ returns x’s covariance matrix.

Mahalanobis Classifier

A binary Mahalanobis classifier is straightforward to 
make, if you know how to calculate the mahalanobis
distance.

mahalanobis_classify(point, matrix, threshold) =
mahalanobis_distance(point, matrix) > threshold
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This is the complete 
process/flowchart for how the 
data is divided up for use in the 
mahalanobis classifier. 

Steps detailing the process are 
given in the following slides.
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First, separate the data into a training and 
testing set (90%) and a final validation set 
(10%).

The validation set is unused, for now.
Only after optimizing all the hyper-
parameters and trying different techniques 
and studying the training & testing data set 
should it be used.
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Second, divide the training and testing set by 
the label type (damaged or undamaged).

The undamaged data is then further sub-
divided by 9-fold cross validation. 9 folds are 
used because the testing sets will comprise 
1/9th of 90%  (10%) which is the size of the 
final validation set.
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The ‘training’ portion of the undamaged data 
from the 9-fold cross validation should be 
used to construct the mahalanobis covariance 
matrix and mean vector.

The remaining 10% is divided in half, with 5% 
used for the selection of the distance 
threshold, and the other 5% for testing the 
Mahalanobis classifier.

The damaged data is not used in the 
construction of the mahalanobis matrix.

Half of the damaged data is used for 
constructing the ROC curve using the 
mahalanobis distance metric, from 
which the ideal threshold will be 
selected.

Once that threshold is selected (which 
defines the mahalanobis classifier), the 
mahalanobis classifier can be tested with 
the remaining half of the damaged data 
(and the 5% of the undamaged testing 
data mentioned previously).
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Performance using Varying # of Dimensions
In this case, the performance becomes very good with 
sufficiently many dimensions. The reason for the giant leap in 
the jump from 2 to 3 dimensions is because the line of points (at 
Variance(PG1) = 0) become spread out across the Variance(PG2) 
Pressure Diff. Sum plane.

Theoretically, you can combine sensors to project into 2D 
dimensions that are about as good for separating the data, but 
you still physically need to capture this sensor data before doing 
the dimension reduction on the data.

1 Dimension

2 Dimensions
3 Dimensions

Eload Performance with Varying # of 
Dimensions

The Board401 (0K Actuations) and the higher actuation datasets (28K, 50K, 
etc.) were used for these figures. Eload severity below 650 was considered 
undamaged, and equal or above 650 damaged.



Just [000] as undamaged
Fold 0: Test acc: 100.000% | Train acc: 100.000%
Fold 1: Test acc: 99.938% | Train acc: 100.000%
Fold 2: Test acc: 100.000% | Train acc: 100.000%
Fold 3: Test acc: 100.000% | Train acc: 100.000%
Fold 4: Test acc: 100.000% | Train acc: 100.000%
Fold 5: Test acc: 100.000% | Train acc: 100.000%
Fold 6: Test acc: 99.938% | Train acc: 100.000%
Fold 7: Test acc: 99.938% | Train acc: 99.815%
Fold 8: Test acc: 99.877% | Train acc: 99.938%

Using just [000] works well perhaps 
because there’s not much overlap 
between its and those of the other 
severity classes.

Likewise, using [000-650] works well too, 
because the block of intermingling points 
[300-650] isn’t being split across the 
undamaged and damaged classes.

ELoad
Using Board401 (0K) dataset & the higher-

actuator datasets (28K, 50K, etc).

Green: Training Undamaged data
Black: Testing Undamaged data
Red: Testing Damaged data



Using [000 – 375] as undamaged
Fold 0: Test acc: 72.866% | Train acc: 70.092%
Fold 1: Test acc: 73.143% | Train acc: 74.161%
Fold 2: Test acc: 79.654% | Train acc: 83.927%
Fold 3: Test acc: 77.721% | Train acc: 77.823%
Fold 4: Test acc: 78.433% | Train acc: 78.128%
Fold 5: Test acc: 71.617% | Train acc: 75.178%
Fold 6: Test acc: 81.994% | Train acc: 80.875%
Fold 7: Test acc: 72.431% | Train acc: 75.381%
Fold 8: Test acc: 79.145% | Train acc: 78.128%

ELoad
Using Board401 (0K) dataset & the higher-

actuator datasets (28K, 50K, etc).

Undamaged and damaged points are 
intermingling because each severity in 
here is measured at multiple points in 
time after substantially different 
numbers of actuation, and the 
variation in behavior over actuation is 
enough to make a fuzzy border 
between damage severities.



Using [000 – 480] as undamaged
Fold 0: Test acc: 84.746% | Train acc: 85.978%
Fold 1: Test acc: 86.133% | Train acc: 87.827%
Fold 2: Test acc: 88.290% | Train acc: 86.595%
Fold 3: Test acc: 81.510% | Train acc: 83.051%
Fold 4: Test acc: 89.368% | Train acc: 90.139%
Fold 5: Test acc: 76.733% | Train acc: 79.199%
Fold 6: Test acc: 88.444% | Train acc: 88.272%
Fold 7: Test acc: 83.359% | Train acc: 89.198%
Fold 8: Test acc: 85.670% | Train acc: 87.346%

ELoad
Using Board401 (0K) dataset & the higher-

actuator datasets (28K, 50K, etc).



Using [000 – 650] as undamaged
Fold 0: Test acc: 99.381% | Train acc: 99.068%
Fold 1: Test acc: 99.381% | Train acc: 99.379%
Fold 2: Test acc: 97.833% | Train acc: 98.447%
Fold 3: Test acc: 98.447% | Train acc: 99.379%
Fold 4: Test acc: 99.068% | Train acc: 97.516%
Fold 5: Test acc: 100.000% | Train acc: 99.689%
Fold 6: Test acc: 98.758% | Train acc: 98.758%
Fold 7: Test acc: 99.379% | Train acc: 99.379%
Fold 8: Test acc: 97.205% | Train acc: 96.894%

ELoad
Using Board401 (0K) dataset & the higher-

actuator datasets (28K, 50K, etc).



Accuracy for Each Fold [Using separate train/test for ROC threshold selection]

Fold 0: Test acc: 85.897% | Train acc: 96.154%
Fold 1: Test acc: 79.487% | Train acc: 87.179%
Fold 2: Test acc: 73.077% | Train acc: 82.051%
Fold 3: Test acc: 88.462% | Train acc: 96.104%
Fold 4: Test acc: 75.641% | Train acc: 83.117%
Fold 5: Test acc: 89.744% | Train acc: 88.312%
Fold 6: Test acc: 89.744% | Train acc: 92.208%
Fold 7: Test acc: 88.462% | Train acc: 85.714%
Fold 8: Test acc: 67.949% | Train acc: 72.727%

Mahalanobis on ELeak Data
Summary
Accuracy is not great [68% - 89%] 
using Mahalanobis distance over 
the ELeak data.

Here Eleak 005, 010, 020, and 050 
were considered undamaged, and 
Eleak 100 & 150 damage.

However, it looks like the larger 
line-cluster on the left of the 2D 
PCA projection scatterplot is 
much better separated than the 
line-cluster on the right.

They may need to be separated 
and treated differently (e.g. each 
given their own PCA reduction).



Mahalanobis on ELeak Data

Rotation A Accuracy
[ Rot. A is > median(angle) ]

Fold 0: Test acc: 94.737% | Train acc: 94.737%
Fold 1: Test acc: 78.947% | Train acc: 97.368%
Fold 2: Test acc: 86.842% | Train acc: 89.474%
Fold 3: Test acc: 92.105% | Train acc: 89.474%
Fold 4: Test acc: 76.316% | Train acc: 81.579%
Fold 5: Test acc: 94.737% | Train acc: 97.368%
Fold 6: Test acc: 94.737% | Train acc: 100.000%
Fold 7: Test acc: 92.105% | Train acc: 89.474%
Fold 8: Test acc: 89.474% | Train acc: 89.189%

Rotation B Accuracy
[ Rot. B is <= median(angle) ]

Fold 0: Test acc: 90.000% | Train acc: 87.500%
Fold 1: Test acc: 82.500% | Train acc: 85.000%
Fold 2: Test acc: 90.000% | Train acc: 87.500%
Fold 3: Test acc: 95.000% | Train acc: 90.000%
Fold 4: Test acc: 87.500% | Train acc: 97.436%
Fold 5: Test acc: 97.500% | Train acc: 92.308%
Fold 6: Test acc: 90.000% | Train acc: 94.872%
Fold 7: Test acc: 90.000% | Train acc: 94.872%
Fold 8: Test acc: 97.500% | Train acc: 87.179%

Low: 76%
High: 94%

Low: 82%
High: 97%

The distribution of the points in the PCA-reduced spaces are very different – suggesting 
there’s a definite difference in how Eleak manifests in the clockwise vs. counter-
clockwise cases, besides the sign/value of the angle.



LDA Dimension-Reduction on ELeak Data

The purple and brown clusters (Eleak 100 and Eleak 150 respectively) are the damaged cases – the others 
are undamaged. In both 3D representations, the damaged and undamaged clusters are visually separable 
by a plane. This means that the classes of data are (mostly) linearly separable.

However, each LDA-found cluster still contains some outliers from clusters of another class (e.g. some 
blue points [Eleak 005] appear in the brown cluster [Eleak 150]).



Data Sphering

Above: Rotation B ELeak data down-projected into 
the top 3 whitened principal component directions, 
with the unit sphere centered at the mean of the 
undamaged data. Damaged points [>=100] are in 
red, undamaged [<100] in black.

The data is not Gaussian-distributed, nor spherical 
after the whitening PCA transformation.

The fact that each cluster is a line [1D] in 3D space 
suggests the difference between the undamaged 
groups is overpowering the difference within the 
groups in 2 of the 3 dimensions.

Non-Gaussian Data
The undamaged data is not spherical after transformation. 
This is because:

1. Each severity has a different mean
2. The clockwise/counter-clockwise samples have different means
3. There are strong outliers (potentially samples from previous or following severity)

Fitting only to Non-Outliers
Left: Rot. B Eleak 005 data using Ali’s features & down-projecting to 3D using whitened PCA.
Right: Rot. B Eleak 005 data using Ali’s features & down-projecting to 3D using whitened PCA, 
but fitting the PCA transformation only to non-outlier points. An sklearn isolation forest (default 
settings) was used for outlier detection.

By removing non-outlier points prior to fitting the whitening PCA transformation, the 
resultant transformation better spheres the data.

The outlier points are still plotted: a red dot can be seen on the left side of the graph. 
However, the other outliers are so far from the mean under the new transformation 
that they don’t appear on the graph.

ELeak Rot. B
[Projected via 3D Whitened PCA]



Data Sphering
Whitening PCA Projection Whitening PCA Projection Fit only on  non-outliers

The more spread out the points are within the sphere, the better. 
By contrast, a line/plane inside the sphere indicates just a few points are strongly influencing PCA’s choice of a particular dimension.



Multiple Mahalanobis Classifiers
Possible solution
Make a classifier for each severity case, then grouping classifiers
according to their over-arching category (e.g. damaged/undamaged)

An ellipse is fit to each undamaged class (using isolation forest + whitening PCA), and then a convex hull is formed 
encapsulating all the ellipses. The size of the ellipses (i.e. the Mahalanobis distance from the center of each class) could be 
optimized with ROCs. 

The graphics above uses a size of 5 for all the ellipses, and uses Eleak cases <100 for undamaged, and >=100 for damage. 
Rotation B (angle <= median) is used for the left figure, and Rotation A (angle > median) is used for the figure on the right.


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

